A KNN Based Kalman Filter Gaussian Process Regression
نویسندگان
چکیده
The standard Gaussian process (GP) regression is often intractable when a data set is large or spatially nonstationary. In this paper, we address these challenging data properties by designing a novel K nearest neighbor based Kalman filter Gaussian process (KNN-KFGP) regression. Based on a state space model established by the KNN driven data grouping, our KNN-KFGP recursively filters out the latent function values in a computationally efficient and accurate Kalman filtering framework. Moreover, KNN allows each test point to find its strongly correlated local training subset, so our KNN-KFGP provides a suitable way to deal with spatial nonstationary problems. We evaluate the performance of our KNN-KFGP on several synthetic and real data sets to show its validity.
منابع مشابه
KNN-based Kalman filter: An efficient and non-stationary method for Gaussian process regression
The traditional Gaussian process (GP) regression is often deteriorated when the data set is large-scale and/or non-stationary. To address these challenging data properties, we propose a K-Nearest-Neighbor-based Kalman filter for Gaussian process regression (KNN-KFGP). Firstly, we design a test-inputdriven KNN mechanism to group the training set into a number of small collections. Secondly, we u...
متن کاملReal Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation
Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...
متن کاملA New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملA New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملTO APPEAR IN SPECIAL ISSUE: ADVANCES IN KERNEL-BASED LEARNING FOR SIGNAL PROCESSING IN THE IEEE SIGNAL PROCESSING MAGAZINE 1 Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing
Gaussian process based machine learning is a powerful Bayesian paradigm for non-parametric non-linear regression and classification. In this paper, we discuss connections of Gaussian process regression with Kalman filtering, and present methods for converting spatio-temporal Gaussian process regression problems into infinite-dimensional state space models. This formulation allows for use of com...
متن کامل